Interplay between 1,3-Butadien-1,4-diyl and 2-Buten-1,4-dicarbene Derivatives: The Quest for Nucleophilic Carbenes

Gebhard Haberhauer** ${ }^{*}$ and Rolf Gleiter** ${ }^{*}$
${ }^{\dagger}$ Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
*Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

(S) Supporting Information

Abstract

By means of high level quantum chemical calculations, the influence of electron-donating heteroatomic groups (O, NH) was investigated on the 1,6 -transannular ring closure of 1,6 -cyclodecadiyne ($\mathbf{8 a}$). In the case of $\mathbf{8 a}$, the bicyclo[4.4.0] deca-1,6-dien-2,7-diyl biradical 12 is generated. It was found that oxygen centers or NH groups next to the triple bond reduce the activation energy of the ring closure considerably. For the intermediate, a 2 -buten-1,4-dicarbene derivative is predicted. The extension of the model calculations to two hydroxyl- or aminoacetylenes predicts the formation of the corresponding 1,3-butadien-1,4-diyl intermediates or the 2-buten-1,4-dicarbene derivatives, a member of the nucleophilic carbene family. Moreover, the calculations predict that two separated dimethoxyacetylenes are more than $7 \mathrm{kcal} / \mathrm{mol}$ less stable than the corresponding biradical and dicarbene, respectively. Possible reactions of the dicarbenes with transition metal compounds are discussed.

INTRODUCTION

Two triple bonds, fixed parallel in close proximity, react with each other via a trans-1,3-butadien-1,4-diyl intermediate. This was first reported when Mitchell and Sondheimer ${ }^{1}$ tried to generate dinaphth-1,6-didehydro[10]annulene (2) from the precursor 1 (Scheme 1).

Scheme 1. Generation of Zethrene (4) via 2 and 3 from 1

When 1 was treated in boiling pyridine, only zethrene (4) could be isolated in 22% yield. These results were confirmed by Staab et al. ${ }^{2}$ A related reaction was found when Myers and Finney prepared 1,6 -didehydro[10] annulene (5) ${ }^{3}$ (Scheme 2). This species could only be studied at temperatures below -90 ${ }^{\circ} \mathrm{C}$. At higher temperatures, it cyclized to naphthalene (7) via the 1,5 -dehydronaphthalene (6) intermediate. In line with

Scheme 2. Thermal Rearrangement of 1,6-
Didehydro[10] annulene (5) to 1,5-Dehydronaphthalene (6)

these observations were experiments with 1,6-cyclodecadiyne (8a) and some of its derivatives. ${ }^{4}$ When N, N^{\prime}-diisopropyl-1,6-diazacyclodeca-3,8-diyne ($\mathbf{8 b}$) was heated with hydrocarbons, ${ }^{4 a}$ or the parent system 8a was treated with $\mathrm{CCl}_{4},(\mathrm{SCN})_{2}$, or $\mathrm{BrCN},{ }^{4 \mathrm{~b}}$ the products were rationalized by assuming bicyclo[4.4.0]deca-1,6-dien-2,7-diyl (12) as intermediate (see Schemes 3 and 4)., ${ }^{4,5}$

The energetic parameters of 12 were measured by using the trapping rate of 8 a with NO and O_{2} in the gas phase and in supercritical CO_{2} in the temperature range $160-240{ }^{\circ} \mathrm{C} .{ }^{5 \mathrm{a}}$

These studies yielded the activation enthalpy of 28.6 ± 0.4 $\mathrm{kcal} / \mathrm{mol}$ for the reaction of 8a to $\mathbf{1 2}$ as shown in Scheme 4. For the biradical 12, a heat of formation of $116.2 \mathrm{kcal} / \mathrm{mol}$ was measured. ${ }^{5 a}$ By using CASPT2[g1]/6-31G* calculations, the activation enthalpy was calculated to be $21.4 \mathrm{kcal} / \mathrm{mol} .^{5 \mathrm{~b}}$ These latter investigations suggest also that the 1,6 -ring closure is favored by $7 \mathrm{kcal} / \mathrm{mol}$ with respect to the 1,5 -ring closure to 14

[^0]Scheme 3. Reactions of 8a with Halogens or Pseudohalides to 9 or of 8 b with Hydrocarbons to 10

Scheme 4. Generation of 12 and 14 from 8a via 1,6 or $1,5-$ Ring Closure

Scheme 5. Heterocyclic Model Systems 15, 18, 21 and Their Expected Products 17, 20, 23

(see Scheme 4). Our theoretical studies on the transannular ring closure of 8 a to $\mathbf{1 2}$ show that the $2 \mathrm{p}_{\sigma}$ orbitals at centers 5 and 10 of $\mathbf{1 2}$ interact rather strongly through-bond, and thus in
the biradical 12 the occupation number of the HOMO (18a a_{u}) is larger than the LUMO ($19 \mathrm{a}_{\mathrm{g}}$), and hence the triplet state ${ }^{3} \mathrm{~A}_{\mathrm{u}}$ is predicted above the singlet state ${ }^{1} \mathrm{~A}_{g}$. ${ }^{5 \mathrm{~b}}$

To find out if the transannular ring closure of two triple bonds in a 10 -membered ring system can be influenced by substituent effects, we have carried out model calculations on various cyclic congeners as shown in Scheme 5. Later, we extended our investigations on the dimerization of simple substituted alkynes.

METHODOLOGY AND BENCHMARK CALCULATIONS

All calculations were performed by using the program package Gaussian 09^{6} and MOLPRPO. ${ }^{7}$ From our earlier calculations of the potential energy of the reaction profile of 8a to 12 (Scheme 4), ${ }^{5 \mathrm{~b}}$ we experienced that dynamic correlation effects have to be included to describe the biradical $\mathbf{1 2}$ properly. In this work, we used the double hybrid method B2PLYPD by Grimme ${ }^{8}$ and coupled cluster (CCSD(T)) calculations ${ }^{9}$ and compared them to results derived by the MP4SDQ ${ }^{10}$ MP2, ${ }^{11}$ CASSCF, ${ }^{12}$ and CASPT2 ${ }^{13}$ levels of theory.

The geometrical parameters of the stationary points were optimized by means of B2PLYPD-full (for all) and (12,10)CASSCF (for 8a, 11, 12, and 18-20) calculations. As basis sets the $6-31+\mathrm{G}^{* * 14}$ and the aug-cc-pVDZ ${ }^{15}$ have been used. We further assumed that C_{i} symmetry is maintained during the reaction. For the alkynes 27 and $31 C_{s}$ symmetry, for alkyne $24 C_{3 v}$ symmetry, for alkyne 35 no symmetry restriction, and for all other stationary points C_{i} symmetry was applied. The reactions of $\mathbf{1 8}$ to $\mathbf{2 0}$ and of $\mathbf{2 7}$ to $\mathbf{2 9}$ have also been calculated without symmetry restriction. The obtained results did not differ from those obtained within C_{i} symmetry. Frequency calculations were carried out at each of the structures to verify the nature of the stationary point. It turned out that the alkynes, diynes, bicyclic biradicals, and dicarbenes have no imaginary frequency, whereas the transition states have exactly one. The energies of the stationary points were calculated using B2PLYPD-full/aug-cc-pVDZ (for 8a, 11, and 12), (12,10) CASSCF (for 8a, 11, 12, and 18-20), (12,10) CASPT2 (for 8a, 11, 12, and 18-20), MP4SDQ-FC (for 8a, 11, and 12), MP2FC (for 8a, 11, and 12), and CCSD(T)-FC. The 6-311++G** and 6$311++G(3 \mathrm{~d}, 2 \mathrm{p})$ basis sets ${ }^{16}$ were employed. To obtain the potential energy curves for the cyclization, the distance C1 $\cdots \mathrm{C} 6$ was fixed at a specific value, and all other geometric variables were optimized using B2PLYPD-full within the C_{i} point group. A similar procedure was used to study the $\mathrm{C}-\mathrm{C}$ bond formation of two alkyne units. Here, the reaction profiles of the dimerization were obtained by calculating the energies of about 15 points of the surface by varying the $\mathrm{C} 1-\mathrm{Cl}^{\prime}$ distance R between 4.00 and $1.40 \AA$. All other geometrical parameters of the dimers were optimized within C_{i} symmetry on the level of the B2PLYPD-full theory.

As the experimental data for the cyclization of $\mathbf{8 a}$ to $\mathbf{1 2}$ are known, we used this reaction for benchmark calculations. The results for different methods (all of them but the CASSCF method include the dynamic correlation effects) and different basis sets are compared in Table 1 to those of the experiment. It is found that the first three approaches $((\mathrm{a})-(\mathrm{c}))$ reproduce the energies of $\mathbf{1 1}$ and 12 with respect to 8a quite well. The best agreement is found for method (c). The comparison also shows that the results derived by the Møller-

Table 1. Comparison between the Results of the Methods of Calculations ($(\mathrm{a})-(\mathrm{g}))$ for the Distance $R=\mathrm{C} 1-\mathrm{C} 6$ and the Difference $\Delta E(\mathrm{kcal} / \mathrm{mol})$ of the Activation Energy between 8a and 11 and 12, Respectively

	$R[\AA]^{a}$	$\Delta E(\exp)^{5 a}$	ΔE^{a}	ΔE^{b}	ΔE^{c}	ΔE^{d}	ΔE^{e}	ΔE^{f}	0.0
$\mathbf{8 a}$	3.247	0.0	0.0	0.0	0.0	0.0	0.0	0.0	43.8
$\mathbf{1 1}$	1.811	28.9	27.9	26.6	28.1	37.7	22.1	19.0	
$\mathbf{1 2}$	1.561	24.6	26.1	24.6	24.7	41.5	14.7	42.2	14.4

[^1]Plesset approach (d,e), the CASSCF (f), and the CASPT2 (g) methods differ considerably from experiment.

This comparison is also illustrated in Figure 1 where the energy profiles derived for the reaction of $\mathbf{8 a}$ to $\mathbf{1 2}$ are plotted as a function of

Figure 1. Energy profile of 8 a to 12 as derived by various levels of theory. The energies are given as a function of R, the distance between centers 1 and 6. Abbreviations used: Opt for optimization and SP for single point calculation.
the $\mathrm{C} 1 \cdots \mathrm{C} 6$ distance R. We decide to use for further investigations the B2PLYPD level of theory for the optimization of the geometrical parameters. The energies of the stationary points were calculated in a further step by the $\operatorname{CCSD}(\mathrm{T})$ level of theory. This choice is based on our above-mentioned experience of calculations of biradicals such as 12 and related ones from Bergman cyclizations. ${ }^{17}$ A single reference method seems in our case reasonable due to the aforementioned strong difference of the occupation numbers of the radical centers.

RESULTS AND DISCUSSION

a. Cyclic Diynes. To study the influence of free electron pairs of heteroatoms on the intramolecular 1,6-ring closure, we calculated the reaction profile of $\mathbf{1 5}, \mathbf{1 8}$, and 21 , the congeners of 8 a . The potential energy curves (Figure 2) were derived by calculating about 15 points on the surface by means of the B2PLYPD/6-31+G** procedure. The relative energies of the transition states (16, 19, 22) and of the bicyclic products (17, 20,23) were also derived by means of single point calculations using the $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}^{* *} / / \mathrm{B} 2 \mathrm{PLYPD} / 6-31+\mathrm{G}^{* *}$ procedure as given in Table 2. This table contains also the singlet-triplet energy differences $(\Delta E(S-T))$ using the same level of theory.

The calculations reveal a lowering of the barriers from 11 to 16 by about $7 \mathrm{kcal} / \mathrm{mol}$, from 11 to 19 by $20 \mathrm{kcal} / \mathrm{mol}$, and from 11 to 22 by $15 \mathrm{kcal} / \mathrm{mol}$ based on the $\operatorname{CCSD}(\mathrm{T})$ calculations (Table 2). The most striking result is the strong stabilization of the bicyclic products 20 and 23 (cf., Table 2 and Figure 2). To rationalize these findings, we consider in Figure 3 at the left side a qualitative correlation diagram between the frontier orbitals of $\mathbf{8 a}$ and $\mathbf{1 2}$, assuming C_{i} symmetry. During the 1,6 -ring closure, the occupied out-of-plane π orbital $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{o}}\right)$ and the occupied in-plane π orbital $\mathrm{a}_{\mathrm{u}}\left(\pi_{\mathrm{i}}\right)$ of 8 a will be destabilized, whereas the unoccupied in-plane π orbital $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{i}}^{*}\right)$ will be stabilized. This brings the $\mathrm{a}_{\mathrm{u}}(\sigma)$ (HOMO) and $\mathrm{a}_{\mathrm{g}}(\sigma)$

Figure 2. Energy profiles for the transannular ring closure of $\mathbf{8 a}$ to $\mathbf{1 2}$ (blue; $\mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}$), $\mathbf{1 5}$ to $\mathbf{1 7}$ (purple; $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Y}=\mathrm{O}$), $\mathbf{1 8}$ to 20 (red; $\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{CH}_{2}$), and 21 to 23 (green; $\mathrm{X}=\mathrm{NH}, \mathrm{Y}=\mathrm{CH}_{2}$) as a function of the $\mathrm{C} 1 \cdots \mathrm{C} 6$ distance R using B2PLYPD/6-31+G**.

Table 2. Energy Differences (ΔE, kcal/mol) between the Various Starting Materials 8a, 15, 18, 21 and Their Corresponding Transition States (11, 16, 19, 22) and Bicyclic Products (12, 17, 20, 23) as a Function of R, the C1 \cdots C6 Distance ${ }^{a}$

	$R[\AA]^{b}$	ΔE^{b}	ΔE^{c}	$\Delta E(\mathrm{~S}-\mathrm{T})^{d}$
$\mathbf{8 a}$	3.247	0.0	0.0	
$\mathbf{1 1}$	1.811	27.9	28.1	
$\mathbf{1 2}$	1.561	26.1	24.7	9.4
$\mathbf{1 5}$	3.195	0.0	0.0	
$\mathbf{1 6}$	1.846	21.5	21.3	
$\mathbf{1 7}$	1.565	19.3	17.8	12.2
$\mathbf{1 8}$	3.116	0.0	0.0	
$\mathbf{1 9}$	2.112	6.6	7.5	
$\mathbf{2 0}$	1.386	-19.2	-18.8	18.7
$\mathbf{2 1}$	3.294	0.0	0.0	
$\mathbf{2 2}$	1.996	11.6	12.0	
$\mathbf{2 3}$	1.388	-14.4	-17.2	33.8

${ }^{a}$ Also given are the singlet-triplet splitting $(\Delta E(S-T))$ in the products and the calculation procedures. ${ }^{5}$ B2PLYPD/6-31+G**. ${ }^{c} \operatorname{CCSD}(\mathrm{~T}) / 6-311++\mathrm{G}^{* *} / / \mathrm{B} 2$ PLYPD $/ 6-31+\mathrm{G}^{* *} .{ }^{d}$ Singlet-triplet energy difference with $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}^{* *} / / \mathrm{B} 2 \mathrm{PLYPD} / 6-$ $31+\mathrm{G}^{* *}$.
(LUMO) orbitals relatively close together. According to our calculations, the energy difference between HOMO and LUMO is quite sizable; therefore, mainly the HOMO is populated (cf., Table 3, below). Please note that due to through-bond interaction ${ }^{18}$ in 12 the antibonding linear combination $\left(\mathrm{a}_{\mathrm{u}}(\sigma)\right)$ of the nonbonding orbitals at C 5 and C10 is lower in energy than the bonding linear combination $\left(\mathrm{a}_{\mathrm{g}}(\sigma)\right)$ and thus represents the HOMO in 12.
In the case of $\mathbf{1 8}$ (right side of Figure 3), the $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{o}}\right)$ orbital is considerably destabilized due to a strong antibonding interaction between the p_{π} orbitals at the sp carbons and oxygen. In the case of a 1,6 -ring closure, the $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{i}}{ }^{*}\right)$ will be stabilized and the $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{o}}\right)$ orbital will be destabilized. As a result

Figure 3. Correlation of frontier orbitals for the ring closure of $\mathbf{8 a}$ to $\mathbf{1 2}$ and $\mathbf{1 8}$ to $\mathbf{2 0}$, assuming C_{i} symmetry for starting materials and products. For comparison we used the same numbering for all molecules.

Table 3. Selected NBO Results Derived for 12, 20, and 23 by Means of HF/6-311++G**//B2PLYPD/6-31+G** Calculations ${ }^{\boldsymbol{a}}$

compound	bonds	occupation number
$\mathbf{1 2}$	$\pi(\mathrm{C} 1-\mathrm{C} 10 ; \mathrm{C} 5-\mathrm{C} 6)$	1.92
	$\mathrm{n}_{1}(\mathrm{C} 5, \mathrm{C} 10)^{b}$	1.73
	$\mathrm{n}_{2}(\mathrm{C} 5, \mathrm{C} 10)^{c}$	0.34
$\mathbf{2 0}$	$\pi(\mathrm{O} 4-\mathrm{C} 5 ; \mathrm{O} 9-\mathrm{C} 10)$	1.97
	$\pi(\mathrm{C} 1-\mathrm{C} 6)$	1.82
	$\mathrm{n}(\mathrm{C} 5 ; \mathrm{C} 10)$	1.91
$\mathbf{2 3}$	$\pi(\mathrm{~N} 4-\mathrm{C} 5 ; \mathrm{N} 9-\mathrm{C} 10)$	1.97
	$\pi(\mathrm{C} 1-\mathrm{C} 6)$	1.83
	$\mathrm{n}(\mathrm{C} 5 ; \mathrm{C} 10)$	1.91

${ }_{b}^{a}$ For numbering of the atoms in 12, 20, and 23, see Schemes 4 and 5. ${ }^{b} \mathrm{n}_{1}$ antibonding linear combination $\left(\mathrm{a}_{\mathrm{u}}(\sigma)\right)$ of the nonbonding orbitals at C 5 and C10. ${ }^{c} \mathrm{n}_{2}$ bonding linear combination $\left(\mathrm{a}_{\mathrm{g}}(\sigma)\right)$ of the nonbonding orbitals at C 5 and C 10 .
of this crossing, two electrons from the $\mathrm{a}_{\mathrm{g}}(\pi)$ orbital are formally transferred to the $\mathrm{a}_{\mathrm{g}}(\sigma)$ orbital. Thus, in 20 both orbitals with large coefficients at C5 and C10 are occupied. In the case of the ring closure of $\mathbf{8 a}$ to $\mathbf{1 2}$, such a crossing does not occur. Therefore, only one orbital $\left(\mathrm{a}_{\mathrm{u}}(\sigma)\right)$ with large coefficients at C5 and C10 is (mainly) occupied. The correlation diagram in Figure 3 predicts a biradical for 12 and a dicarbene for 20 . For the ring closure of 21 to 23 , our calculations predict also a dicarbene, centered at positions 5 and 10 .

The electronic structures for $\mathbf{1 2}, \mathbf{2 0}$, and 23 as derived from Figure 3 are corroborated by an NBO^{19} analysis based on a HF calculation. The resulting occupation numbers are compiled in Table 3 for 12, 20, and 23. We notice for $\mathbf{1 2}$ strong π bonds for
$\mathrm{C} 1-\mathrm{C} 10$ and $\mathrm{C} 5-\mathrm{C} 6$ (1.92 electrons). The antibonding linear combination of the radical centers $\left(n_{1}\right)$, which is represented by the $\mathrm{a}_{\mathrm{u}}(\sigma)$ orbital, is occupied by 1.73 electrons, whereas the bonding linear combination $\left(\mathrm{n}_{2}\right)$ of the radical centers $\left(\mathrm{a}_{\mathrm{g}}(\sigma)\right)$ is occupied by 0.34 electrons. These latter values are in agreement with a small singlet-triplet splitting of $9.4 \mathrm{kcal} / \mathrm{mol}$ for 12 as shown in Table 2. For 20, we find for the O4-C5, O9-C10 bonds a strong π character of 1.97 electrons, stronger than for the C1-C6 bond (1.82 electrons). The nonbonding carbene orbitals (n) at C5 and C10 are occupied by 1.91 electrons. In agreement with these results is a strong singlettriplet splitting of $18.7 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{2 0}$. For the reaction of 21 to 23 , one obtains a closely related correlation diagram as for the reaction of 18 to 20 . The high lying $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{o}}\right)$ orbital is strongly destabilized, and the low lying $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{i}}{ }^{*}\right)$ orbital is stabilized. As a consequence, two high lying σ orbitals result (a_{w} a_{g}) with large coefficients at C5 and C10. Because of this orbital crossing, the NBO analysis (Table 3) shows very similar occupation numbers in the case of $\mathbf{2 3}$ as for $\mathbf{2 0}$. The results listed in Table 3 are "translated" into a valence bond representation of 12, 20, and 23 in Figure 4. The predicted properties for $\mathbf{1 2}$ suggest a singlet biradical, whereas for 20 and 23 one expects a nucleophilic dicarbene with a singlet ground state.

If we consider once again the correlation diagram for the cyclization of $\mathbf{1 8}$ to $\mathbf{2 0}$ (Figure 3), one can see that there is a crossing between a filled and empty orbital along the reaction coordinate. During this crossing, two electrons from the $\mathrm{a}_{\mathrm{g}}(\pi)$ orbital are formally transferred to the $\mathrm{a}_{\mathrm{g}}(\sigma)$ orbital. As the used methods (B2PLYPD and $\operatorname{CCSD}(\mathrm{T})$) are based on a single reference configuration, there is discontinuous change of this reference wave function along the reaction coordinate. In the

Figure 4. Valence bond formulations of 12, 20, and 23.
range of this change, neither B2PLYPD nor $\operatorname{CCSD}(\mathrm{T})$ is able to describe the molecule properly. To check if the change of this reference wave function is far from the transition state, $(12,10)$ CASSCF $/ 6-311++G^{* *}$ and $(12,10)$ CASPT2/6-311+ $+\mathrm{G}^{* *}$ single point (SP) calculations were performed. The geometric parameters of the points along the reaction coordinate were optimized (Opt) using (12/10)CASSCF/6$31+\mathrm{G}^{* *}$ and B2PLYPD $/ 6-31+\mathrm{G}^{* *}$, respectively (see Figure 5). A comparison of the energy profiles for the cyclization of $\mathbf{1 8}$ to 20 shows that with CASSCF and CASPT2 methods two minima for $\mathbf{2 0}$ are found. The one with a $\mathrm{C} 1-\mathrm{C} 6$ distance of $1.50 \AA$ represents the biradical $\mathbf{2 0}(\mathrm{br})$, whereas the minimum at a C1-C6 distance of $1.36 \AA$ is the dicarbene $20(\mathrm{dc})$. Interestingly, the CASPT2 energies for the biradical 20(br) and dicarbene $\mathbf{2 0}(\mathrm{dc})(-21.8$ and $-18.6 \mathrm{kcal} / \mathrm{mol})$ are lower if their geometric parameters are optimized by B2PLYPD/6$31+\mathrm{G}^{* *}$ as compared to the values obtained by $(12,10)$ -CASPT2/6-311++G**//(12/10)CASSCF/6-31+G** (-20.5 and $-14.0 \mathrm{kcal} / \mathrm{mol}$). The energy for the dicarbene 20(dc) $(-18.6 \mathrm{kcal} / \mathrm{mol})$ calculated by means of CASPT2//B2PLYPD agrees very well with the value obtained by $\operatorname{CCSD}(\mathrm{T}) / /$

B2PLYPD ($-18.8 \mathrm{kcal} / \mathrm{mol}$). Independent of the used method for the optimization of the geometric parameters, the CASPT2 energy of the biradical $\mathbf{2 0}(\mathrm{br})$ is lower than the value for the dicarbene $\mathbf{2 0}(\mathrm{dc})$. However, this result should be handled with care as the CASPT2 approximation is prone to overestimate the stabilization of biradical states. ${ }^{5 b}$ For example, the value calculated by means of CASPT2 for $\mathbf{1 2}$ is lower by about 10 $\mathrm{kcal} / \mathrm{mol}$ than the experimental one observed (Table 1). Bearing this in mind, one can doubt if the biradical 20(br) represents a minimum on the reaction profile at all.

An analysis of the CASSCF wave function should allow the determination of the biradical character of a stationary point. As a measure of the biradical character of the transition state 19 and the biradical $20(\mathrm{br})$, the occupation numbers of the frontier orbitals $\mathrm{a}_{\mathrm{u}}(\sigma)$ and $\mathrm{a}_{\mathrm{g}}(\sigma)$ can be used. In a perfect biradical, both frontier orbitals would be equally populated. A comparison shows that the biradical character increases on going from 18 via 19 to $20(\mathrm{br})$ (Table 4 and Supporting Information). For $\mathbf{2 0}(\mathrm{br})$, the calculated values for the occupation numbers for $\mathrm{a}_{\mathrm{u}}(\sigma)$ and $\mathrm{a}_{\mathrm{g}}(\sigma)$ are close to that found for the biradical 12. Thus, 12 and $\mathbf{2 0}(\mathrm{br})$ are still far from being "perfect", which is due to a strong through-bond interaction between the orbitals of the radical centers. In the case of the dicarbene $\mathbf{2 0}(\mathrm{dc})$, the orbitals $\mathrm{a}_{\mathrm{u}}(\sigma)$ and $\mathrm{a}_{\mathrm{g}}(\sigma)$ are almost completely occupied, whereas the orbital $\mathrm{a}_{\mathrm{g}}(\pi)$ exhibits a rather small occupation number. Hence, the description of the dicarbene $\mathbf{2 0}(\mathrm{dc})$ using a single reference method such as $\operatorname{CCSD}(\mathrm{T})$ and B2PLYPD is justified. The above-mentioned change in the configuration of the reference wave function occurs in the area between 1.50 and $1.40 \AA$.
b. Two Alkynes. The unexpected behavior of 20 and 23 encouraged us to investigate the $\mathrm{C}-\mathrm{C}$ bond formation of two alkynes substituted by one or two donor groups. The models used in our investigations are shown in Scheme 6. To obtain the reaction profile of the products of a $\mathrm{C} 1-\mathrm{C}^{\prime}$ or $\mathrm{C} 2-\mathrm{C} 2^{\prime}$ dimerization, we calculated the energies of about 15 points of the surface by varying the $\mathrm{C} 1-\mathrm{C} 1^{\prime}$ or $\mathrm{C} 2-\mathrm{C} 2^{\prime}$ distance R between 4.00 and $1.40 \AA$. All other geometrical parameters of

Figure 5. Energy profile of 18 to 20 as derived by various levels of theory. The energies are given as a function of R, the distance between centers 1 and 6. The geometric parameters were optimized using (12/10)CASSCF/6-31+G** (left) and B2PLYPD/6-31+G** (right). Abbreviations used: Opt for optimization, SP for single point calculation, br for biradical, and dc for dicarbene.

Table 4. Occupation Numbers of Selected Natural Orbitals of 8a, 11, 12, and 18-20 ${ }^{a}$

| orbitals | $\mathbf{8 a}^{\boldsymbol{b}}$ | $\mathbf{1 1}^{\boldsymbol{b}}$ | $\mathbf{1 2}^{\boldsymbol{b}}$ | $\mathbf{1 8}^{\boldsymbol{b}}$ | $\mathbf{1 9}^{\boldsymbol{b}}$ | $\mathbf{2 0 (\mathrm { br }) ^ { \boldsymbol { b } }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{i}}{ }^{*}\right) / \mathrm{a}_{\mathrm{g}}(\sigma)$ | 0.062 | 0.336 | 0.556 | 0.065 | 0.237 | 0.648 |
| $\mathrm{a}_{\mathrm{u}}\left(\pi_{\mathrm{i}}\right) / \mathrm{a}_{\mathrm{u}}(\sigma)$ | 1.933 | 1.670 | 1.450 | 1.930 | 1.770 | 1.360 |
| $\mathrm{a}_{\mathrm{g}}\left(\pi_{\mathrm{o}}\right) / \mathrm{a}_{\mathrm{g}}(\pi)$ | 1.941 | 1.911 | 1.881 | 1.941 | 1.923 | 1.863 |

${ }^{a}$ The results are taken from $(12,10)$ CASSCF $/ 6-311++G^{* *}$ calculations. Some selected natural orbitals are also depicted in the Supporting Information. ${ }^{b}$ Geometry parameters were optimized using $(12,10)$ CASSCF/6-31+G**. ${ }^{c}$ Geometry parameters were optimized using B2PLYPD/6$31+G^{* *}$.

Scheme 6. Possible Dimerization Products from Two
Alkynes $24 \cdot 24,27 \cdot 27,31 \cdot 31$, and $35 \cdot 35$

the dimers were optimized on the level of the B2PLYPD theory. To determine the energies of the transition states and the final products, we also used the $\operatorname{CCSD}(\mathrm{T})$ level of theory (see Table 5). The energy values presented in Table 5 are throughout higher for the $\mathrm{C} 2-\mathrm{C} 2^{\prime}$ bond formation as compared to the $\mathrm{C} 1-\mathrm{C} 1^{\prime}$ bond closure; therefore, we used in Figure 6, where we compare the energy profiles for the $\mathrm{C}-\mathrm{C}$ bond formation, only the results for the $\mathrm{C} 1-\mathrm{Cl}^{\prime}$ bond closure. A comparison between the potential energy curves of the cyclic species 8a, 18, 21 (cf., Figure 2) with those of 24, 27, 31, and 35 (Figure 6) reveals a similar behavior: the pure hydrocarbons (8a and 24) show the highest activation energy, and the biradicals 12 and 26 are about $25 \mathrm{kcal} / \mathrm{mol}$ less stable than the starting materials. The activation energy is lowered when heteroatoms with free electron pairs are attached directly to the triple bonds, 18 and 21 for cyclic species, and 27, 31, and 35 for noncyclic model systems. In the case of the oxygencontaining compound, the biradical 29 is of stability similar to that of the corresponding dicarbene 30 . The nitrogen-

Table 5. Energy Differences (ΔE in $\mathrm{kcal} / \mathrm{mol}$) between the Various Starting Materials (24, 27, 31, and 35), Transition States, and Corresponding Products ${ }^{a}$

compound	$R[\AA]^{b}$	ΔE^{b}	ΔE^{c}
$\mathbf{2 4}$	$-^{d}$	0.0	0.0
$\mathbf{2 4 \cdot 2 4} \boldsymbol{\#}^{\#}$	1.82	26.7	31.4
$\mathbf{2 6}$	1.54	23.6	27.0
$\mathbf{2 5}$	1.56	29.9	30.6
$\mathbf{2 7}$	$-^{d}$	0.0	0.0
$\mathbf{2 7 \cdot 2 7 ^ { \# }}$	1.97	18.0	21.5
$\mathbf{2 9}$	1.47	4.0	5.6
$\mathbf{3 0}$	1.38	4.1	8.0
$\mathbf{2 8}$	1.50	8.7	8.0
$\mathbf{3 1}$	$-^{d}$	0.0	0.0
$\mathbf{3 1 \cdot 3 1}$	1.95	19.1	23.5
$\mathbf{3 3}$	1.48	7.0	11.5
$\mathbf{3 4}$	1.38	-8.7	-3.3
$\mathbf{3 2}$	1.54	21.0	20.9
$\mathbf{3 5}$	$-^{\boldsymbol{d}}$	0.0	0.0
$\mathbf{3 5 \cdot 3 5}$	2.07^{e}	6.3^{f}	13.3^{f}
$\mathbf{3 6}$	1.47^{e}	-16.5^{f}	-7.7^{f}
$\mathbf{3 7}$	1.40^{e}	-14.2^{f}	-7.9^{f}

${ }^{a}$ The distances R of $\mathrm{C} 1-\mathrm{C}^{\prime}$ and $\mathrm{C} 2-\mathrm{C} 2^{\prime}$ are also given. ${ }^{b}$ B2PLYPD/ aug-cc-pVDZ. ${ }^{c} \operatorname{CCSD}(\mathrm{~T}) / 6-311++\mathrm{G}(3 \mathrm{~d}, 2 \mathrm{p}) / /$ B2PLYPD/aug-ccpVDZ . ${ }^{d}$ The monomeric alkynes were used as references. ${ }^{e}$ B2PLYPD/6-31+G**. ${ }^{f} \mathrm{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}^{* *} / / \mathrm{B} 2$ PLYPD $/ 6-$ $31+\mathrm{G}^{* *}$.
containing dicarbene 34 is much more stable than the corresponding biradical 33 .

For two dimethoxyacetylenes (35.35), our calculations predict that the biradical 36 is of stability similar to that of the corresponding dicarbene 37. Furthermore, the activation barrier for the dimerization of $\mathbf{3 5}$ is much lower than that for 27 and 31. Yet the most striking aspect is that the calculations predict that two separated alkynes 35 are more than $7 \mathrm{kcal} / \mathrm{mol}$ less stable than the corresponding biradical 36 and dicarbene 37, respectively.

To rationalize the data obtained for $24,27,31$, and 35 , we have compared in Figure 7 the frontier orbitals of two propynes (24-24) producing hexa-2,4-dien-2,5-diyl (26) (left side Figure 7) with two hydroxyacetylenes (27.27) giving rise to the dicarbene 30 (right side of Figure 7). Similar to Figure 3, the heteroatoms in 27 cause an orbital crossing by destabilizing the occupied $\pi\left(\mathrm{b}_{\mathrm{g}}\right)$ linear combination and stabilizing the $\sigma\left(\mathrm{a}_{\mathrm{g}}\right)$ orbital of $\mathbf{2 7 . 2 7}$ during the $\mathrm{C} 1-\mathrm{Cl}^{\prime}$ bond formation. Finally, in 30 both carbon "lone" pairs b_{u} and a_{g} are occupied, whereas in 26 only b_{u} was occupied. This latter situation resembles that experienced for the ring closure of $\mathbf{1 8}$ to $\mathbf{2 0}$ very much as shown in Figure 3.

For 26, 29, 30, 33, 34, 36, and 37, NBO analyses based on HF calculations confirm the electronic structures of the different dimerization products (see Table 6). For the biradicals

Figure 6. Energy profiles for the $\mathrm{C} 1-\mathrm{C}^{\prime}$ bond formation of $\mathbf{2 4} \mathbf{2 4}$ (blue), 27.27 (red), 31.31 (green), and 35.35 (violet) using B2PLYPD/aug-cc-pVDZ (for 24.24, 27.27, and 31.31) and B2PLYPD/6-31+G** (for 35-35).

26, 29, 33, and 36, two strong π bonds for $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C}^{\prime}-$ $\mathrm{C}^{\prime}{ }^{\prime}$ are found. The antibonding linear combinations of the radical centers are occupied by $1.72-1.76$ electrons. In the bonding linear combination of the radical centers of 26, 0.30 electrons are found. Because of the electron-donating effect of
the nitrogen and oxygen, the bonding linear combinations of the radical centers in 29,33 , and 36 are occupied by $0.37-0.46$ electrons, which is a little bit higher than the value found for the hydrocarbon 26.

For the dicarbenes 30,34 , and 37 , we find strong π bonds between $\mathrm{C} 1-\mathrm{Cl}^{\prime}$, which are occupied by $1.81-1.88$ electrons. The nonbonding carbene orbitals $\mathrm{n}_{\text {sp }}$ at C 2 and $\mathrm{C} 2^{\prime}$ have occupation numbers of values of 1.86-1.93 electrons. In the case of 34 and 37 , strong π bonds are found between C2-N3 ($\mathrm{C} 2-\mathrm{O} 3$) and $\mathrm{C}^{\prime}-\mathrm{N}^{\prime}\left(\mathrm{C}^{\prime}-\mathrm{O}^{\prime}\right)$ showing an occupation number of 1.97 electrons. For dicarbene 30, we find no π bond between $\mathrm{C} 2-\mathrm{O} 3$, but two nonbonding orbitals at the oxygen O 2 (not given in Table 6) and a p orbital at the carbene center, which is occupied by 0.28 electrons.

The molecular structures of the dicarbenes differ besides the lengths of the $\mathrm{C} 1-\mathrm{C} 1^{\prime}$ bond distinctly from that found for the corresponding biradicals (see the Supporting Information). In the biradical 29, the n_{p} orbitals of the oxygen atoms are in the same plane as the orbitals of the radical centers. On the contrary, in the dicarbene 30 , the n_{p} orbitals of the oxygen atoms are perpendicular to the $\mathrm{n}_{\text {sp }}$ carbene orbitals. This orientation leads to a stabilizing interaction with the empty p orbital of the carbene centers and avoids a 4-electron repulsion with the n_{sp} carbene orbitals. Similar behaviors are found for the biradical 33 and 36 as well as the dicarbenes 34 and 37.

■ CONCLUSION, POSSIBLE APPLICATIONS, AND EXPERIMENTAL RESULTS

In summary, we were able to show that the transannular ring closure of cyclic decadiynes and the dimerization of alkynes are strongly affected by electron-donating heteroatomic groups (O , NH). It was found that oxygen centers and NH groups next to the triple bonds reduce the activation barrier and stabilize the formed 1,4 -biradical. These effects are stronger for the oxygencontaining compounds. Beside the 1,4-biradicals, 1,4-dicarbenes

27-27

Figure 7. Correlation between the frontier orbitals for the $1,1^{\prime}$ interaction of two propynes (left) and two hydroxyacetylenes (right), assuming $C_{2 h}$ symmetry for starting materials and products. For comparison we used the same numbering for all molecules.

Table 6. Selected NBO Results Derived for 26, 29, 30, 33, 34, 36, and 37 by Means of HF Calculations

| compound | | bonds/occupation number | |
| :---: | :--- | :--- | :--- | :--- |
| $\mathbf{2 6}^{a}$ | $\pi(\mathrm{C} 1-\mathrm{C} 2) / 1.95$ | $\mathrm{n}_{1}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{c} / 1.72$ | $\mathrm{n}_{2}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{d} / 0.30$ |
| $\mathbf{2 9}^{a}$ | $\pi(\mathrm{C} 1-\mathrm{C} 2) / 1.93$ | $\mathrm{n}_{1}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{c} / 1.75$ | $\mathrm{n}_{2}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{d} / 0.37$ |
| 30^{a} | $\pi\left(\mathrm{C} 1-\mathrm{C} 1^{\prime}\right) / 1.84$ | $\mathrm{n}_{\mathrm{sp}}(\mathrm{C} 2) / 1.92$ | $\mathrm{p}(\mathrm{C} 2) / 0.28$ |
| 33^{a} | $\pi(\mathrm{C} 1-\mathrm{C} 2) / 1.93$ | $\mathrm{n}_{1}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{c} / 1.76$ | $\mathrm{n}_{2}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{d} / 0.46$ |
| 34^{a} | $\pi\left(\mathrm{C} 1-\mathrm{C} 1^{\prime}\right) / 1.88$ | $\mathrm{n}_{\mathrm{sp}}(\mathrm{C} 2) / 1.86$ | $\pi(\mathrm{~N} 3-\mathrm{C} 2) / 1.97$ |
| 36^{b} | $\pi(\mathrm{C} 1-\mathrm{C} 2) / 1.94$ | $\mathrm{n}_{1}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{c} / 1.72$ | $\mathrm{n}_{2}\left(\mathrm{C} 2, \mathrm{C} 2^{\prime}\right)^{d} / 0.39$ |
| 37^{b} | $\pi\left(\mathrm{C} 1-\mathrm{C} 1^{\prime}\right) / 1.81$ | $\mathrm{n}_{\mathrm{sp}}(\mathrm{C} 2) / 1.93$ | $\pi(\mathrm{O} 3-\mathrm{C} 2) / 1.97$ |

${ }^{a} \mathrm{HF} /$ aug-cc-pvdz//B2PLYPD/aug-cc-pVDZ. ${ }^{b} \mathrm{HF} / 6-311++\mathrm{G}^{* *} / /$ B2PLYPD/6-31+G**. ${ }^{c} \mathrm{n}_{1}$ antibonding linear combination (b_{u}) of the nonbonding orbitals at C 2 and $\mathrm{C} 2^{\prime} .{ }^{d}{ }_{\mathrm{n}_{2}}$ bonding linear combination $\left(\mathrm{a}_{\mathrm{g}}\right)$ of the nonbonding orbitals at C 2 and $\mathrm{C} 2^{\prime}$.
are found as possible products. These species are stabilized by the electron-donating effects of the adjacent oxygen and nitrogen atoms. In the case of the nitrogen-containing compounds, the 1,4 -dicarbens are much more stable than the corresponding 1,4 -biradicals, whereas in the case of the oxygencontaining compounds, 1,4-biradicals and 1,4-dicarbenes show similar energies.

At first glimpse, the products $\mathbf{3 0}, 34$, and 37 seem rather farfetched. However, if one realizes that they are novel members of the nucleophilic carbene family, ${ }^{20}$ a broad interest is warranted. The above-mentioned dicarbenes should yield unknown Fischer-carbenes (39) with reactive transition metal carbonyls, such as 38 (see Scheme 7). ${ }^{21}$

Scheme 7. Reaction of Carbonyl Complexes 38a and 38b with 37 To Yield the Fischer-Carbene Complexes 39a and 39b

Similar reactions are expected with $\mathrm{CpMn}(\mathrm{CO})_{2}(\mathrm{THF})^{22}$ and 37. The further use of such Fischer-carbenes in chemistry has been described in textbooks on organotransition metal chemistry. ${ }^{23}$ The isolation of $\operatorname{Ag}(\mathrm{I}), \mathrm{Au}(\mathrm{I})$, and $\mathrm{Pd}(\mathrm{II})$ complexes of N -heterocyclic carbenes and their application in catalysis ${ }^{24,25}$ opens also new perspectives for the nucleophilic dicarbenes of type 37. In Scheme 8, we have depicted three possible structures for $\operatorname{Ag}(\mathrm{I}), \mathrm{Au}(\mathrm{I})$, and $\mathrm{Pd}(\mathrm{II})$ complexes (40a, 40b, and 41) with 37.

Scheme 8. Possible Structures for $\operatorname{Ag}(\mathrm{I}), \mathrm{Au}(\mathrm{I})$, and $\operatorname{Pd}(\mathrm{II})$ Complexes Obtained from 37

The systems sketched in Schemes 7 and 8 are not only very interesting per se but can be used to trap the dicarbenes and shift the equilibrium between biradicals and dicarbenes in favor of the dicarbenes.

The dimerization reactions of two alkyne units discussed in the last paragraph should also be relevant with respect to the
stability of alkynes. Dialkoxyacetylenes and bis(dialkylamino)acetylenes are described in the literature. ${ }^{26}$ Dimethoxy- and diethoxyacetylenes are reported to be highly reactive and stable below $-40{ }^{\circ} \mathrm{C}$. ${ }^{27}$ The thermal stability of dialkoxyalkynes improves when bulky groups (e.g., isopropyl or t-butyl) are used as substituents. ${ }^{28}$ The bis(dialkylamino)acetylenes are reported to be more stable than the dimethoxy congeners, and several procedures for their preparation are known. ${ }^{26,29}$ Our calculations suggest a dimerization of two substituted alkyne units such as 27,31 , or 35 , which will lead to 1,3 -butadien-1,4diyl intermediates or electron-rich dicarbenes. Furthermore, the calculations predict that the activation barriers of dialkoxyalkynes should be lower than those of bis(dialkylamino)acetylenes, which is consistent with the experimental stability of these compounds. Also related to our model calculations are studies on the solid-state polymerization of 1,4-disubstituted 1,3-butadiynes (Scheme 9). ${ }^{30}$ ESR spectroscopic and optical absorption spectroscopy at low temperatures ${ }^{31}$ reveal biradical and dicarbene intermediates.

Scheme 9. Solid-State Polymerization of 1,3-Diynes To Yield a trans-Polybutadiyne

ASSOCIATED CONTENT

Supporting Information

Cartesian coordinates and absolute energies for all calculated compounds and complete ref 6 . This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

gebhard.haberhauer@uni-due.de; rolf.gleiter@oci.uniheidelberg.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (DFG). We thank Prof. Georg Jansen (Essen), Prof.

Peter Hofmann (Heidelberg), and Prof. Doris Kunz (Tübingen) for helpful discussions.

REFERENCES

(1) Mitchell, R. H.; Sondheimer, F. Tetrahedron 1970, 26, 21412150.
(2) Staab, H. A.; Ipaktschi, J.; Nissen, A. Chem. Ber. 1971, 104, 1182-1190.
(3) Myers, A. G.; Finney, N. S. J. Am. Chem. Soc. 1992, 114, 1098610987.
(4) (a) Gleiter, R.; Ritter, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 2470-2472. (b) Weigl, H.; Gleiter, R. Tetrahedron Lett. 1997, 38, 1541-1542. (c) Gleiter, R.; Weigl, H.; Haberhauer, G. Eur. J. Org. Chem. 1998, 1447-1453.
(5) (a) Roth, W. R.; Wasser, T.; Gleiter, R.; Weigl, H. Liebigs Ann./ Recueil 1997, 1329-1331. (b) Haberhauer, G.; Gleiter, R. J. Am. Chem. Soc. 1999, 121, 4664-4668.
(6) Pople, J. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
(7) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; et al. MOLPRO, version 2012.1, a package of ab initio programs; see http://www.molpro.net.
(8) (a) Grimme, S. J. Chem. Phys. 2006, 124, 034108. (b) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397.
(9) (a) Bartlett, R. J.; Purvis, G. D., III. Int. J. Quantum Chem. 1978, 14, 561-581. (b) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968-5975.
(10) Raghavachari, K.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91-100.
(11) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
(12) (a) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 50535063. (b) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1985, 115, 259-267.
(13) Celani, P.; Werner, H.-J. J. Chem. Phys. 2000, 112, 5546-5557.
(14) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (c) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213-222.
(15) (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007-1023.
(b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, J. J. Chem. Phys. 1992, 96, 6796-6806. (c) Peterson, K. A.; Woon, D. E.; Dunning, T.
H., Jr. J. Chem. Phys. 1994, 100, 7410-7415. (d) Wilson, A. K.; van Mourik, T.; Dunning, T. H., Jr. J. Mol. Struct. (THEOCHEM) 1996, 388, 339-349.
(16) (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648. (b) Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
(17) (a) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25-31. (b) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660-661. (c) Lockhart, T. P.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4091-4096. (d) Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4082-4090. (e) Lindh, R.; Persson, B. J. J. Am. Chem. Soc. 1994, 116, 4963-4969. (f) Lindh, R.; Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlström, G. J. Am. Chem. Soc. 1995, 117, 7186-7194. (g) Kraka, E.; Cremer, D. J. Am. Chem. Soc. 1994, 116, 4929-4936.
(18) (a) Hoffmann, R.; Imamura, A.; Hehre, W. J. J. Am. Chem. Soc. 1968, 90, 99-1509. (b) Hoffmann, R. Acc. Chem. Res. 1971, 4, 1-9. (c) Most recent review: Gleiter, R.; Haberhauer, G. Aromaticity and Other Conjugation Effects; Wiley-VCH: Weinheim, 2012; pp 217-282.
(19) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
(20) (a) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91. (b) De Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862-892.
(21) Raubenheimer, H. G.; Swanepoel, H. E. J. Organomet. Chem. 1977, 141, C21-C22.
(22) (a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1974, 13, 599. (b) Herrmann, W. A.; Plank, J.; Ziegler, M. L.; Weidenhammer, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 777.
(23) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
(24) Schneider, S. K.; Herrmann, W. A.; Herdtweck, E. Z. Anorg. Allg. Chem. 2003, 629, 2363-2370.
(25) (a) Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972975. (b) Wang, H. M. J.; Chen, C. Y. L.; Lin, I. J. B. Organometallics 1999, 18, 1216-1223. (c) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 23712374.
(26) (a) Review: Gleiter, R.; Werz, D. B. Chem. Rev. 2010, 110, 4447-4488. (b) Chemistry of Acetylenes; Viehe, H. G., Ed.; Marcel Dekker: New York, 1969. (c) Witulski, B.; Alayrac, C. Science of Synthesis; Thieme: Stuttgart, 2006; Vol. 24.3, pp 821-833.
(27) Messeguer, A.; Serratosa, F.; Rivera, J. Tetrahedron Lett. 1973, 14, 2895-2898.
(28) (a) Pericás, M. A.; Serratosa, F. Tetrahedron Lett. 1977, 18, 4433-4436. (b) Bou, A.; Pericás, M. A.; Serratosa, F. Tetrahedron 1981, 37, 1441-1449.
(29) Réne, L.; Janousek, Z.; Viehe, H. G. Synthesis 1982, 645.
(30) (a) Wegner, G. Z. Naturforsch. 1969, 24b, 824-832. (b) Wegner, G. Makromol. Chem. 1972, 154, 35-48.
(31) (a) Review: Sixl, H. Adv. Polym. Sci. 1984, 63, 49-90. (b) Huber, R. A.; Schwoerer, M.; Benk, H.; Sixl, H. Chem. Phys. Lett. 1981, 78, 416-420.

[^0]: Received: March 2, 2013
 Published: April 28, 2013

[^1]: ${ }^{a_{B}}{ }^{2 P L Y P D} / 6-31+\mathrm{G}^{* *} .{ }^{b}$ B2PLYPD/aug-cc-pVDZ//B2PLYPD/6-31+G**. ${ }^{c} \operatorname{CCSD}(\mathrm{~T}) / 6-311++\mathrm{G}^{* *} / /$ B2PLYPD $/ 6-31+\mathrm{G}^{* *} .{ }^{d} \mathrm{MP} 4$ SDQ/6-311+ $+\mathrm{G}^{* *} / / \mathrm{B} 2$ PLYPD $/ 6-31+\mathrm{G}^{* *} .{ }^{e}$ MP2/6-311++G**//B2PLYPD/6-31+G**. ${ }^{*}(12,10)$ CASSCF $/ 6-311++\mathrm{G}^{* *} / /(12,10)$ CASSCF $/ 6-31+\mathrm{G}^{* *}$. ${ }^{g}$ CASPT2/6-311++G**//(12,10)CASSF/6-31+G**.

